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ABSTRACT

A new approach for analysing indentation plasticity and indentation
fracture is presented., The analysis permits relations to be established
between material properties (notably hardness, yield strength and elastic
modulus) and the dimensions of the indentation and plastic zone, The pre-
dictions are demonstrated to be fully consistent with observations performed
on a wide range of materials. The indentation stress fields can also be
adapted to generate predictions of indentation fracture thresholds for the
three dominant crack types: vradial, median and lateral cracks. The pre-

dictions are generally consistent with experimental observations.

This manuscript was printed from originals provided by the authors.



1. INTRODUCTION

The response of solids to indentation provides information of central
interest to such important phenomena as erosion (Wiederhorn and Ruff 1979,
Evans 1979a), wear (Koepke 1979, Evans 1979b), machining damage (Marshail,
Lawn and Mecholsky 1980) and (surface-controlled) fracture strength (Marshall
and Lawn 1979a). This association is particularly strong én brittle mate-
rials for which indentation fracture dictates the material degradation
process, Considerable progress toward describing "well-developed" inden-
tation fracture, for a given material/indenter system, has been achieved
by adopting scaling arguments (Lawn and Fuller 19753 Marsha??vaﬂd Lawn
1979b; Lawn, Evans and Marshall 1980) or semi-empirical dimensional analyses
(Evans and Wilshaw 1976); procedures which avert the reguirement for a
complete description of the elastic/plastic indentation. However, the
crack iniation threshold and the trends in the fracture behavior with
material properties (effectswhich are sensitive to the details of indenta-
tion response) havenot been adequately addressed. The extent of plasticity,
the magnitude of the elastic/plastic stress field and their dependence upon
material properties, such as hardness and elastic modulus (Lawn and Evans
19765 Lawn, Evans and Marshall 1980), are issues of primary importance to
these aspects of the indentation fracture problem. This paper provides a
self-consistent analysis pertinent to these effects.

Observations of indentation plasticity by Samuels and Mulhearn (1957)
and by MuThearn (1959) have revealed two fundamentally different modes of
deformation response, For (equivalent) conical indenters with small in-
cluded anges a cutting process, with a plastic zone shape that accords

with rigid/plastic (e.q. slip-Tine field) expectations, is observed, For
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indenters of large included angle,the plastic zone shows spherical symmetry
(usually hemispherical), even in materials subject to ready plasticity (e.g.
annealed brass). This deformation response (referred to as radial compres-
sion) exhibits analogies with the elastic/plastic deformation expected
around a cavity subject to internal pressure (Hi11 1950). The difference
between the two deformation responses to indentation is also manifest in
the degree of material pile-up around the indentation. In the rigid/plastic
regime material is displaced to the surface and therefore gives rise to a
large raised 1ip around the indentation; whereas, for radial compression,
very Tittle pile-up is observed. The transition appears to occur over a
range of cone angles (MuThearn 19593 Atkins and Tabor 1965), such that
Tower transition angles pertain to materials with a higher hardness-to-
modulus ratio. For example, the transition range is ~120° for aluminum
(Haddow and Johnson 1961), ~105° for work-hardened mild steel (Atkins and
Tabor 1965) and ~60° for cold rolled brass (MuThearn 1959). An interpreta-
tion of the behavior of indentations exhibited hemispherical plasticity

is the primary focus of this paper.

The analogy between the hemispherical indentation zone and the pres-
surized spherical cavity has been recognized previously, but not fully ex-
ptoited, Dugdale (1958) and Mulhearn (1959) used a rigid-plastic, radial-
compression model to relate hardness to the stress strain curve and to
calculate the plastic strain field. Marsh (1964) derived a semi-empirical
relation between indentation pressure (hardness) and the ratio of elastic
modulus to yield stress, based on Hill's (1950) spherical cavity expansion
solution for inffnite elastic/plastic materials. The reduced constraint

around the hemsipherical cavity was introduced by allowing two constants
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to be adjusted to fit experimental measurements. However, effects of
indenter geometry were not explicitly considered. In an alternative analy-
sis, which has been widely adopted in recent studies of indentation, Johnson
(1970) attempted to account for the influence of indenter angle by allowing
the indentation pressure to be transmitted via an incompressible hydrostatic
core beneath the indenter. Howeve_rs the core in this analysis is a nebulous
entity and the predicted indentation pressures appreciably underestimate

the measured values (see figures 2 and 3).

The present approach commences by reassessing the correlation between
indentation deformation and the spherical cavity model, and then develops
new concepts for extending the spherical cavity solution to account for
the reduced half-space constraint. The approach suggests an analytic
procedure for calculating the stress field around an indentation. The
stresses deduced in accord with this procedure will be used to consolidate
further the indentation plasticity problem and thus to permit trends in
the indentation pressure and plastic zone radius (with yield stress and
elastic modulus) to be predicted and compared with the experiment. In
addition, the stress analysis permits trends in the fracture initiation
threshold with material properties to be derived and correlated with ex-
perimental observations. Finally, some implications for fracture propa-

gation behavior also emerge from the analysis.

2. INDENTATION ANALYSES
2.l Basic Hypotheses
Two hypotheses establish the present basis for relating indentation

deformation to the spherical cavity model. Firstly, the extent of
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plasticity (as manifest in the volume V of the plastic zone) is considered

to be fundamentally dictated by the plastic work of indentation. Secondly,
the plastic zone volume is assumed to be related exclusively to the inden-

tation volume AV , independent of the indenter geometry. This proposal

is based on observations (and numerical calculations) of spherical symmetry
in the plastic zone, regardless of indenter geometry [Samuels and Mulhearn

(1957)3 Mulhearn (1959)s Swain (1978): Evans, Gulden and Rosenblatt (1978):
Burlingame (1980)] and, in particular, the observation of identical plastic
zone boundaries for sphericatl and Vickers pyramidal indentations of equal

volume (Samuels and Mulhearn, 1957).

The above hypotheses necessarily require that the indentation pressure
be independent of indenter geometry, because the plastic work of indentation
is the product of the indentation pressure and the volume of indentation,
The experimental results of Atkins and Tabor (1965) on steel and copper are
in reasonable accord with this requirement. Specifically, the hardness was
determined to vary by <10% over the range of cone angles for which deforma-
tion occurs by radial compression (the actual variation depends on the de-
gree of prior work hardening of the indented material; constant hardness
occurs at a work hardening strain of about 0.1 - 0.2)., In Section 2.2 the
results of pyramidal indentations performed in soda-1ime glass, ZnS and As,Sq
glass are presented to confirm the approximate shape independence of the
indentation pressure and plastic zone volume.

The assumed shape invariance of the indentation pressure and plastic
zone dimension permits experimental indentation results to be referred to

a common findentation geometry. A convenient reference geometry is the hemi-

spherical indentation, radius a, with hemispherical plastic zone, radius b.



The relative hemispherical indentation dimensions, B , can then be simply

expressed by the relation
g = b/a = (v)'/3 (1a)
which for pyramidal indentation becomes

b/a =(b/5) (w/coty)!/3 (1b)

where 23 s the identation diagonal and 2¥ is the included angle be-
tweeen opposite edges of the pyram?d%@ Transferring the indentation pres-
sure directly to the reference geometry permits experimental results to

be readily compared with hemispherical indentation analyses. The detailed
comparison will be conducted following the stress analysis of the elastic/
plastic indentation. However, preliminary credence in the hypotheses 1is
established Tater in this section by demonstrating a reasonably close cor-
relation between experimental results and the expectations of the spherical

cavity solution.

2.2 Effect of Indenter Geometry on Indentation Pressure

The hypotheses of the previous section were examined by conducting
hardness measurements on several brittle materials, using a wide range of
indenter geometries. Pyramidal indenters with included angles of 60°, 90°,
120°, 140° and 160° were constructed from a sapphire rod and mounted in a
standard microhardness machine. The pyramidal geometry was chosen because
the hardness measurement is not significantly affected by the elastic re-
covery that  occurs duringbunioadiﬂg (Marsh 1964), even for materials of

Tow modulus to hardness ratic. The test materials, soda Time glass, zinc

Tror a Vickers indenter, ¥ = 74°, and a = 0.45a,



e

sulphide and ASZSB glass, were selected to afford a wide range of hardness=
to modulus ratio, while maintaining a Tow absolute hardness with respect to
the sapphire indenters.

The results are shown in figure 1, where the indentation pressure
(load divided by projected indentation area) is plotted against indenter
angle, Also included are measurements obtained from a standard diamond
Vickers indenter. The variation of indentation pressure-is 1ess than
10% over the entire range of ﬁndéﬂtersg This compares with a variation
of a factor of ten in the indentation volume (at constant load) between
the 60° and 160° indenters. Additionally, comparison of the results
from the diamond and sapphire indenters, as shown in fig. 1, indicates
that the mweasured indentation pressures are influenced neither by the

indenter material nor by frictional effects' between the indenter and

test piece,

W]
o
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Correlation Between Indentation Experiments .

and the Spherical Cavity Solution

A preliminary analysis of indentation plasticity is conducted, in
accord with the above hypotheses, by adopting the results of the spherical

cavity solution (Hill 1950);

glx ST+ fn (8)°1 (2a)

Ly D2

(1-0)(8)% = 2(1-2v) (2b)

(98]

E.
Y

where p is the indentation pressure, Y s the yield stress, E s

Young's modulus, v is Poisson's ratio and B is . defined in eqn. (1).

tThe sapphire payramids were not as perfectly polished as the commercial

g;gkegs pyramid and would therefore be expected to show larger frictional
ffects,



These relations can be rearranged to yield expressions that are suitable

for direct comparison with experimental results;

E_ 9 [(1-v) (8)° - 2(1-2v)/3] (3a)
21 + tn(p)°]

22 b [(E,'Y) + 2(192\)@
3 3(1-v)

Y (3b)
These expressions are plotted in figs. 2, 3. The experimental and numerical
results for the relative plastic zone size B , (table 1) are compared with
equation (3a) in fig. 2. The quality of the correlation (which has not
previously been attempted) is encouraging. In particular, it is noted that
the experimental results imply that a smaller indentation pressure is needed
to attain equivalent plastic zone dimensions in the half-space: a tendency
consistent with the reduced elastic constraint of the half-space. This
trend is ultimately quantified in section 3.2.1.

Experimental results relating indentation pressure, yield stress and
elastic modulus, elicited from the studies of Marsh (1964) and Hirst and
Howse (1969) are compared with equation (3b) in fig. 3. (The results for
the polymers are given different symbols because these materials are sub-
Ject in part to densification plasticity during indentation - as manifest
in a refractive index change in the plastic zone (Puttick, 1978) - and
may not, therefore, be suitable for comparison with elastic/plastic solu-
tions). Again, there is both a good correlation and a tendency for the
experimental results to deviate appropriately, toward Tower indentation

pressures. The existence of this correlation could, in fact, have been

deduced from Marsh's interpretation of trends in the indentation pressure,
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in which a reduced constraint was implicitly inctuded in the derivation
of a semi-empirical relation for the indentation pressure. The role of
the reduced constraint is quantified in section 3.2.1.
It is appropriate at this juncture to compare the above correlation
with that achieved by Johnson (figs. 2, 3). It is noted that the comparison

is less satisfactory, particu?af?y with regard to the plastic zone dimension.

3. STRESS ANALYSIS
3.1 The Method of Solution

Previous studies of elastic/plastic indentation stress fields include
an analytic solution (Perrott, 1977) and several numerical solutions (Hardy
et al 1971, Evans 1979c). The analytic solution is based on the premise
that the stresses within the elastic zone are identical in form to the
stress field created by fully-elastic indentation. This ié not an acceptable
assumption for the (axisymmetric) indentation pr@b1em+ and hence, the solu-
tion yields stress fields that are inconsistent with several observed trends
in crack evolution and in indentation plasticity. The numerical solutions
are Timited in scope, and do not provide a sufficient characterization of
the indentation stress field to permit further analysis. (However, the
results provide invaluable sources of comparison, at coincidence points,
with analytic solutions). The stress fields needed for the analysis of

trends in both fracture thresholds and indentation plasticity are developed

in the present paper, using boundary conditions suggested by the reference

flEiastfc stress fields under elastic/plastic conditions are only necessarily
similar in form to the equivalent elastic field when the problem is fully
symmetwic (e.g., in the pressurized spherical cavity). More generally, the
only requirement imposed by the elastic solution is that St. Venant's prin-
ciple be satisfied i.e., that the far field stresses be equivalent to those
given by the elastic-solution (the Boussinesq solution in thisicase)

@l
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hemispherical indentation’ , discussed in section 2,

The approach commences with the elastic/plastic solution for a spherical
cavity, radius a, under a pressure p , which creates a spherical plastic
zone, radius b. This provides an initially symmetric elastic/plastic field
(fig. 4). Then a free surface is created by eliminating the tangential
stressyfie3d acting over a plane through the cavity center (fig, 4). This
is achieved by using the elastic point force solutions pertinent to the
half-plane problem provided by Mindlin (1936), i.e. point forces that do
not create either a normal stress or in-plane shear stresses at the 'surface'
plane. The stresses that result from these forces superimpose onto the
initial, symmetric stresses to generate the indentation stress field. This
procedure would not normally be justified for elastic/plastic problems. How-
ever, it will be demonstrated that, for the present prob?emg this approach

(by virtue of the symmetry) provides a self-consistent solution.

S

Application of the surface forces induces a radial stress, op 5 at

the Tocation of the cavity interface (fig. 4). For calculations of the
stress field while the pressure is still being applied, the effect of the

stress o.° s to create a modified pressure pB (pi =P o= ors)@ This

r

modified pressure pertains to the selected plastic zone and cavity dimensions,
and thereby becomes that indentation pressure (or hardness, H) associated with
a plastic zone of relative size B . All stresses should thus be referred to

the pressure psa

For calculations of the residual stress field, it is not permissable

to retain a stress at the cavity surface. Hence, in this instance, the

t Small deviations from hemispherical symmetry occur in the immediate
vicinity of the free surface; but these deviations reduce in magnitude as
the penetration fincreases: becoming negligible at penetrations of one
diameter,
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stress is eliminated by an iterative scheme, involving the sequential
application of cavity surface pressure and point forces until the residual
forces become negligibly small,

The application of surface forces aiéng a plane bisecting the cavity
must also generate shear stresses within the half plane, which will super-
impose upon the shear stresses provided by the symmetrical cavity solution
(fig. 4). However, within the plastic zone, the maximum principal shear
stress is required to be uniform in order to satisfy the Tresca criterion.
It is dmplicit in the calculation, therefore, that the body forces result
in a constant principal shear stress within this zone. Additional shear
stress of significant magnitude would superimpose on those provided by
the symmetrical solution; in essence, changing the yield strength of the
material, from Y to Y'. The effective yield strength of a material with a
relative indentation plastic zone dimension B thus becomes v

The rationale for expecting the Mindlin forces to provide a relatively
uniform shear stress in the plastic zone is based upon the observed spherical
symmetry of the plastic boundary. The premise must be justified, however,
by the results of the calculations. Specifically, the calculations must
indicate spherically symmetric contours of constant shear stress within
the plastic zone. It will be demonstrated that these requirements are
reasonably well satisfied. Hence, the method of calculation satisfies
both boundary conditions: viz., a stress-free surface and an approximately
uniform shear stress within the plastic zone. A self-consistent solution
can thus be obtained using the proposed approach.

The stress field solutions obtained in the above manner can only be

strictly applicable to a hemispherical indentation. The influence of the
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indenter geometry, although a minor perturbation upon the residual stress
field (because the indentation surface is stress free and significant
geometric effects would only be manifest in the immediate vicinity of the
indentation), can be appreciable at peak load. The origin of the peak

1oad geometry effect is associated with the shape independence of the hard-
ness. As the shape changes (at constant indentation volume) the applied
force must also change in order to maintain a constant hardness (fig. 4).
Hence, it is immediately evident that the remote elastic field must change
in accord with St. Venant's principle. Presumably, a near field shape de-
pendence can also be expected. It is expedient, therefore, to calculate
bounds on the peak load stress field. One bound is provided by the hemi-
spherical cavity solution. The other is given by superimposing onto the
residual field the stress field for a half space subject to a force acting
at the indentation center (fig. 4). The magnitude of the force is selected

to coincide with that pertinent to the Vickers indenter,

3.2 The Indentation Stress Field

The general form of the stress analysis provides a basis for examining
those specific features that ve?ate to the hardness, yield strength, and the
incidence of fracture. The two constituents of the indentation stress field
are the initial field, provided by the cavity expansion solution, and the
free surface modification.

The radial o, and tangential Oy stresses within the initial field

v

(Hi11 1950) are given, during Toad application by;
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where the superscripts pl and ef indicate the plastic and elastic re-
gions respectively and v s distance from the cavity center. The equiva-

lent stresses after load removal are:
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where o refers to the rvesidual field,

, R S ok : ~
The stresses o~ .created by the surface forces have the general form
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where j = p2, k = ef at peak load, and J = rpL, k = reg for the residual
field, mm = xx, Xz or zz, {the stress distribution in cartesian coordinates)
or r, t, ¢,{in spherical coordinateﬁ) and 9ym TE the point force functions
summarized in the Appendix., -The final stresses are obtained by the superposi-
tion of eqn. (6) and egn. (4) or (5).

The stresses at the peak load condition deduced by this procedure repre-
sent an upper bound, Lower peak bound load stresses can be obtained by
superimposing onto the residual field the stresses that derive from a point

force applied at the center of the indentation.

O’mm z i

3.2.1e The Modified FPressure and Yield Strength

The radial and tangential stresses induced within the plastic zone by
tne surface forces result in a pressure modification, which establishes the
hardness H of the material, and in a shear stress modification, which dic-
tates the effective yield strength, ¥', The stresses that effect these modi-

fications are Oi and o;‘ which are given by ean. (6), evaluated at peak load

condition, with mm = r or ¢.

Taking v = 0.25, the variations of H/p along the cavity interface are
plotted in fig. 5 for several values of B. The relative uniformity of
H/p for each 8 indicates that the requisite constant pressure boundary
condition along the indentation interface is satisfied. The indentation

pressure can now be directly related to the cavity pressure p , by
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superpositi0ﬂ+;

Hip = 1 = of/p =1 -m (8)

The effective yield strength of the material at any location in the

plastic zone is given by;
Ve v+ (q% . oi)' (9a)

or, expressed in normalised form;

S S
RX.,L ) iy/p) + g(b/p = Gf/p (Qb)
H 1 - Gi/p

where T is that component of the tangential stress normal to the angle ¢
(fig. 4). The yield strengths at the indentation interface and at the
elastic/plastic boundary are plotted for several B in fig, 6. It is
noted that reasonable uniformity of Y'odis retafned around each of these
contours; although significant fluctuations begin to develop at the larger
values of R. Within the uncertainty associated with these fluctuations,
the magnitude of y'odis essentially the same at the elastic/plastic boundary
and at the indentation interface; and similar to the original value of the
yield strength, Y . No significant change in the yield strength can thus
be attributed to the creation of the free surface. This relative mainte-
nance of yield strength uniformity probably accounts for the observed hemi-
spherical symmetry of the plastic zone.

The modified ratio of indentation pressure to yield strength thus

1Q\dhen the specimen is fully unloaded, o ° and m are replaced by Ugsl’

and m_ respectively. The variationsof m and m, with B are plotted
in fig. 7. ‘ : '
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becomes H/Y , and replaces p/Y for all subsequent analyses. The Tower
indentation pressure reflects the reduction in constraint induced by the
free surface, as anticipated from the indentation plasticity measurements
(figs. 2, 3). The modified pressure can be used to reevaluate the relation-
ship between the indentation characteristics, H and B , and the elastic
and plastic properties, E and Y , of the material. These revised curves
are plotted on figs. 2 and 3. A good correlation with the experimental re-
sults is apparent. Some justification for the free surface modification
deduced by the present analysis is thus established. It is also noted

that the present analysis has, for the first time, permitted consistent
relationships to be established between all of the indentation variables:

the pressure, yield strength, elastic modulus and plastic zone dimensions,

3.2.2., The Stress Field

The general form of the stress field is axisymmetric, but relatively
complex. The results presented in this section thus emphasize only the
components of the stress field and the spatial locations that relate to
the formation of the three dominant crack systems: radial cracking (dic-

tated by the o stress near the free surface and the elastic/plastic

Yy
boundary), median cracking (dictated by the Oy stress near the base of
the plastic zone), and Tateral fracture (dominated by the o stress in

7z
the same general vicinity). The stresses are deduced from the general equa-

tions (as detailed in the Appendix) both at peak Toad and in the fully un-
loaded conditions, for several values of B.
a. The Radial System

The constituents of the surface tangential stresses, o » derived

Yy
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from the original spherical cavity solution and the modifications afforded
by the surface ‘forces are compared in fig. 8. It is observed that the mod-
ification becomes more dominant as the relative plastic zone size B in-
creases, Also, as expected, the modified stress becomes negligible remote
from the plastic zone. However, the most significant influence of the
modification is the enhancement of the peak tension at the elastic/plastic
boundary. Also plotted in fig. 8 are the stresses created by a point
force Tocated at the indentation center, used as a constituent of the
lower bound stress at peak load. This illustrates both the compressive
character of the stresses and their appreciable magnitude in the vicinity
of the elastic/plastic boundary (especially for the small plastic zone
dimension).

The trends in the resultant stress with 8 are illustrated in fig. 9.
The peak value of the realtive stress Uyy/H diminishes slightly as B
increases, whereas the scale of the stress field exhibits a substantial
increase. The residual tensile stresses are generally just in excess of
the upper bound tensions, at the peak load. However, the equivalent Tower
bound solution indicates that the tensile stresses at the peak load are
appreciably suppressed by indenters with shallow cone angles (particularly
for materials with small relative plastic zone dimensions).

The gradient of stress from the surface into the interior of the
specimens is also of substantial interestfg The stress, plotted in fig.

10, is observed to decrease quite rapidly with distance from the surface,

particularly for small B .

+ . .
lThe surface stress is subject to error when determined by numerical
Integration. However, the Tevel of the surface stress needed to obtain

an accurate assessment of the stress gradient can be determined analyticall
as detailed in the Appendix. g v
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b, The Median System

The trends in the Oy stress pertinent to median fracture (fig. 11)
are similar to those obtained for the radial fracture problem. But, in
this instance, the peak load tensile stresses exceed the residual stresses.
Also the peak load stresses are found to be relatively insensitive to the
indenter geometry and hence, only the Tower bound solution is plotted. Note
that the peak values of the tension are appreciably smaller than the equiva-
Tent tangential tensile stresses near the surface, The stress decreases
with distance from the axis (fig. 12), but the gradient is relatively
small, especially for larger values of B .

¢. The Lateral System

The magnitudes of the o,, stresses at various axial locations are
plotted in fig. 13 for B = 2.2. It is apparent that the maxium tensions
occur at a distance beneath the surface of Vv8/2. The trends in the stress
with B along the planes of maximum tension ave illustrated in fig. 14.
Again a decrease in the relative peak tension with increases in 8 is
evident. However, in this case, the residual tension is appreciably larger
than the upper bound tension at the peak load, indicating a greater tendency
for the development of tension during unloading than encountered with the

radial system.

4, INDENTATION FRACTURE
4.1. Crack Propagation

The extension of well developed radial/median cracks has been examined
in detail in a recent analysis, based upon the magnitude of the effective

residual 'force' exerted by the plastic zone on the surrounding elastic

material  (Lawn, Evans and Marshall, 1980). This analysis yields a relation
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for the crack Tength that depends upon the relative magnitude B of the
plastic zone. The original choice of B was a tentative one based on Hill's

spherical cavity solution, B (EiH)7/Z , and gave a crack Tength relation
Ko fe)/?
H/a \H/

where the numerical quantity is calibrated from experimental results on

- 0.028 (asc)>? (10)

gilass. A more pertinent relation between B and material properties can
. . _ . , . 25
be derived from the correlation presented in figure 2. Using B v (E/H) /

appropriate to this figure, equation (10) becomes

K. \ 3/5
e HATT 20,001 (a/e)¥? (1)
Ha \E

The data from Lawn, Evans and Marshall are plotted according to equation (17)
in figure 15. This plot shows an improved correlation, thus futher substan-
tiating the merits of this approach for establishing the extension of well

developed radial cracks.

4.2 Fracture Initiation

a. Observations

The fracture initiation process at indentations 1s subject to appreciable
complexity. The intitiation sequence frequently involves two stages; nuclea-
tion of small microcracks, followed by the extension of those microcracks
suitably located in the general indentation stress field (Fvans and Wilshaw,
1976, Lawn and Evans 1977). The nucleation stage may involve microcracking
of regions of large localized stress concentration; microcracks have been

identified at grain boundaries in polycrystals (presumably at dislocation
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pile-ups), at slip band intersections in single crystals, and at shear

band intersections in glasses (Hagan, 1979). Alternatively, pre-existing
microcracks may serve as suitable crack nuclei., However the nucleation
phase 1is not expected to be the critical phase, because non-propagating
microcracks are usually observed. The significant step in fracture initia-
tion is thus considered to be the activation of the microcracks by the
general indentation field (Lawn and Evans, 1977).

The activation of microcracks by the indentation field is necessarily
statistical in nature (particularly if pre-existing microcracks act as nuclei).
However it has been noted that the characteristic behavior of cracks within
stress fields of rapid spatial variation (typical of indentation) permits
the definition of an absolute fracture initiation minimum (Lawn and Evans
1977). Indentation fracture thresholds must exceed the absolute minimum,

Pm%h » by an amount that depends on the probabilistic consideration of
microcrack location, size and orientation: large numbers of indentations

would allow the Towest initiation Toad to approach P . The minimum

min
threshold is therefore a useful parameter for establishing initiation
trends in processes that involve multiple indentations (e.g. erosion, abra-
sive wear, machining damage).

The minimum force required to initiate cracks has been studied for a
range of materials (Table III, Lankford and Davidson, 1979). Acoustic
emission measurements performed during indentation, coupled with direct
observations after indentation (using a Vickers Pyramid) suggested that

radial cracks were the first to initiate, and that initiation occurred during

Toading. Direct observations during indentation of soda-11ime glass (using
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an inverted optical microscope and dry nitrogen environment (Marshall and
Lawn, 1979b) also indicated that the minimum threshold pertained to radial
crack nucleation, but the cracks formed while unloading (Table III). Since
radial cracks always appear to exhibit the Towest threshold, pre-existing
surface cracks may be an important source of nuclei. This possibility is

investigated in more detail Tater in this section.

b, Analysis

The prediction of the minimum threshold involves the systematic estima-
tion of stress intensity factors for cracks of various profiles, centered
at different locations, in order to obtain the shape and location that
yields the maximum peak value for K . Such a systematic study has not
yet been conducted. Instead, it is firstly assumed that a crack centered
on the elastic/plastic boundary will experience the largest K , because
this is the contour of maximum tension within the indentation field. Then,
for simplicity, the crack is considered to exhibit circular symmetry, as
suggested by the crack profiles observed after initiation. Thereafter,
the stress intensity factors can be deduced from the stress field by a
superposition method. The stress fields of the pertinent locations for
median, radial and lateral fracture initiation are not generally axisymmetric,
so the computed stress intensity factors would vary around the crack front,
A convenient simplification that yields a uniform crack front K is adopted.
This averts appreciable calculational complexity without detracting signifi-
cantly from the prediction of behavioral trends. The procedure consists of
the determination of an effective axisymmetric stress Oaff at each radial

Tocation, assumed to be equal to the stress (at that location) averaged over
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the full angular range, 0 to 2m, The stress intensity factor can then be

derived from the superposition solution;

(12)

The effective stress normalized by the hardness, can be adequately repre-

sented by a polynomial

)2 (13)

aaaaa

Oape/H = 8y - a1(r/a) + az(r/a

where the parameters a, , aj (both positive) and as (either positive
or negative) are dependent on the relative plastic zone size B8 . Insertion
of equation (13) into equation (12), followed by integration yields the re-

sult

K/ a2 = £(s) =2(5/m) %Ly - (may/8)6 + (2a,/3)6% + ... ]
(14)
where ¢ = c/a. This relation exhibits a peak in the stress intensity factor

(when dK/dc = 0). This peak coincides with a specific relative crack length,

given by (neglecting coefficients a, » with n>3)

o 2.2
§ = (3/80&2) 3mag - 4f9m%ay" - 640 aa,/3 | (15)
A minimum threshold occurs when the peak value of K attains KC . The

crack Tength at the minimum threshold is

*

ok * % _2
c =3¢ sy = 6 [KIC/H (s )] (16)

and the threshold load for a Vickers pyramidal indenter becomes
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- - ‘. ) 45
Prin = 2H 80 PHLK o /H £(8 117/(0.45)

2 (17)

The results summarized in equations (16) and (17) reduce to the Lawn and
Evans (1977) result when a0 is set to zers*ﬁ The trends in the threshold
with material toughness and hardness are thus essentially the same as those
elucidated in the earlier study, except that an additional influence of E/H
emerges through the influence of the relative plastic zone size B . This
additional influence is illustrated in figure 16, It is noted that the
minimum normalized threshold Toad decreases as B increases, causing a
relative diminution of the threshold as the extent of plasticity increases.

The wminimum threshold loads for the three crack types (radial, median,
Tateral), predicted for materials with a range of B values, are shown in
Table II., The calculations are referred to the Vickers geometry. Radial
cracks exhibit the lowest thresholds and Tateral cracks the largest. The
median cracks invariably exhibit their lower threshold during loading; while
the lateral crack threshold always prevails during the unloading cycle. The
occurrence of the radial crack threshold depends upon the indentation geometry.
For those configurations best described by the upper bound stress field, the
threshold could occur during Toading or unloading, by virtue of the similarity
in the threshold condition. However, shallow indentation geometries, which
are best represented by the Tower bound stress, favor radial crack formation

» during unloading.

*% IS
he other difference between the Lawn and Evans study and the present

analysis is that the former used only order-of-magnitude estimates of

a, and ay -



Observed radial crack threshold conditions are compared with predic-
tions in Table I11I. Good agreement is shown for Ge, Si, A?ZOS and ZnS,
The observed threshold for NaCl appears to be lower than predicted. However,
as noted by Lankford and Davidson , the NaCl threshold is sensitive to
crystallographic orientation; the experimental value listed in Table II
corresponds to cracks parallel te <110>. Radial cracks could not be
nucleated in other orientations, within the available load range (v60N ).
The <110> cracks in NaCl (and other donic solids) are coincident with the
primary slip bands that occur outside the generalised plastic zone, The
cracks result from an enhancement of the local stress by the stress field
of the dislocations, and a threshold appreciably smaller than that associ-

ated with the generalised deformation is to be anticipated.

The observed thresholds for glass are an order of magnitude higher
than predicted. This observation suggests that the precursor flaw density
is too small to permit an appreciable sampling of flaws of the requisite size,
at the minimum threshold load. Elevation of the observed threshold above
the absolute minimum is not generally observed and hence, its occurrence
in glass requires an explanation, A plausible interpretation emerges when
the radial crack precursors are considered to be pre-existent surface located
microcracks. Then, surfaces prepared by mechanical procedures are likely
to exhibit high density of surface cracks and the absolute minimum threshold
should be closely approached. This condition pertains for the tests per-
formed on Si, Ge, ZnS and ATZOSQ However, for surfaces prepared without
deliberate mechanical interaction (such as glass surfaces) appreciably

lower surface crack densities might be expected, and some elevation above
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absolute minimum might be anticipated. The excess threshold load can be
quantified (interms of the availability of pre-existing nucleating flaws)
by adapting some existing statistical data for surface flaws in glass
(Matthews, McClintock and Shack 1976). The statistical analysis firstly
invokes the characteristic variation in stress intensity factor with crack
length in order to determine the pre-existing crack radius o (fig. 17).
Inspection of the trends in stress intensity factor indicates a rapid in-
crease on K at small flaw Tengths (up to the maximum). Relatively small
deviations of the pre-existing flaw size below c* would thus substantially
elevate the observed threshold, in qualitative accord with the observation
for glass. The radius of the pre-existing radial crack nucleus, Cy 5 can
be directly deduced from the K curve by superimposing the ratio of the
measured final radial crack Tength, Ce o and the indentation diagonal,
zéf , as indicated on fig. 17. The flaw radius pertinent to samples tested
in air (cf = 17um at Ef =T0um) is determined to be c; = 0.5um, i.e. %c*/z
The probability of Tocating flaws of this magnitude within the indentation
field at the threshold Toad can now be estimated from the surface flaw den-
sity data. The flaw density data are described in terms of the gquantity
g(S)dS , which is the number of surface flaws in unit area with a strength
between S and S + dS . An approximate linear fit to the density func~

tion gives;

Toglg(s)] = 2°9(S/Smax) - 2.4 (18)

8

where Smax = 8.7 x 107Pa. The number of surface flaws with a strength §

s

existing in an area AA (AA = W(ré - r%)}is thus:
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S

G(S) = Aﬂeﬁf g(s) ds (19)
0

The strength of a surface flaw is related to its radius by;

- K
g= J T (20)

The number of flaws with radius > ¢ in the area A 1is thus

Ke

097?;Fgw
c

Glc) = AA Jg% g{5)dS (21)
0
At the observed threshold load (5N) the area of surface subject to signifi-
\1,,
9 7

cant residual tension is 3 x 107°m" . The expected number of flaws in the
tensile zone (at initiation) with a size >0.5um thus becomes ~“0,1. This is
sufficiently close to the required value of unity (considering the approxi-
mate nature of the flaw statistics, the tensile area sampled and the unknown
relative influences of subcritical crack growth in the air environment)

that the statistical description is considered to provide a reasonable
interpretative description of the excess threshold load.,

Finally the predicted radial crack thresholds for some polycrystalline
materials are shown in Table IV. It is noted that, because the threshold
crack dimension for most of the materials is approximately equal to, or
smaller than, the grain size, single crystal material properties (H, E and
KC) would normally provide a more appropriate basis for prediction. The
sensitivity to the choice of material parameters is illustrated by comparing
the predictions for A?ZOS in Table III (based on single crystal material

properties) and Tablé IV (based on polycrystal material properties). The

%The area is estimated by taking ry = 2a and ro = da,
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prediction in Table IV represents an order-of-magnitude overestimate of
the observed threshold, A similar overestimate is apparently obtained for
$iC, since the predictions in Table IV exceed the experimental measurements

&,

(Lankford and Davidson) by a_ factor of ~10 (p

it

* ~ ° 1
0.1, ¢ = 1.0um). Suitable
single crystal material parameters are not available for SiC., Hence, a more

pertinent prediction of the threshold cannot be performed at the juncture.

5. CONCLUSIONS

[N

L

Indentation plasticity has been examined by adapting the notions that
the volume of the plastic zone and the work of plastic penetration are both
dictated by indentation volume. The indentation problem can then be solved
by reference to a common hemispherical indentation geometry. This geometry
is related to the pressurized cavity problem solved by Hill, modified to

s

account for the reduced constraint in the presence of the free surface. A
simple hemispherical modification of the Hill solution has been developed
which indicates the essential relationships between indentation plasticity
and the dominant material properties: notably, yield strength, hardness,
elastic modulus and Poisson's ratio. Predictions of the plastic zone di-
mension in terms of the hardness and elastic modulus have been shown to
corvelate with experimental observations for a wide range of materials.
Similarly, predictions of the trend in the yield strength/hardness ratio
with the elastic modulus and hardness correspond closely to the trends
demonstrated by the available experimental data.

The concept has been used to calculate the tensile stress fields
~generated avound indentations, as a basis for predicting the initiation of

indentation fractures. The presence of the free surface allows tensile

stresses to be developed, during loading or while unloading, that are
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qualitatively consistent with observations of the three principal crack
types: vradial, median and lateral. The stress fields have been used to
predict fracture initiation thresholds for the three crack systems. The
radial cracks were anticipated to exhibit the Towest threshold loads, as
observed»experimenta??y; Comparison of the predicted radial crack threshold
Toads with experimental results indicate satisfactory correlations for sur-
faces containing a sufficient density of pre-existent crack initiation
sites, This condition was not satisfied for glass surfaces and the experi-
mentally observed threshold was appreciably in excess of the prediction.

The excess threshold was rationalized by invoking the weakest Tink flaw .

statistics concepts, using data obtained for comparable glass surfaces.,
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APPENDIX

DETAILED EXPRESSIONS FOR INDENTATION STRESS FIELD DETERMINATION

1. The Point Force Solution

A semi-infinite elastic homogeneous solid is considered to be bounded
by the plane z = 0, the positive z axis penetrating into the body. For a
point force p applied at point (0,0,0) and acting in the positive =z
direction, the stress at a point (x,y.z) inside the semi-infinite body

has been determined by Mindlin (1936). The solutions are;

Oxx = P9xx
Tyy = Plyy
Oz = PYy5
O%z = Pyy
where
= 2 y
. 2 _ L afX 12y 2 2 R 2 5.2
SCREPC N L *(%) (R¥z)? (-8 3 o )E
_ ) -
.z 1=2v 2 2 R ;.2 5,2
g = 1o - 3(Y) - - RZ -2 4 Rop2o;
Wooogrd L (%> (R+z)2 < Y z ( Y ﬂz
gZZ = = 323/2WR5
9y, = - 3xz°/2R°

2 2 2 2 . .
here R® = x" + y* + 2% and v s Poisson's ratio.
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In terms of spherical coordinates (r,t,¢), the stress at a point (x,0,z) in

the x-z plane is:

i

2 . 2 . ]
9y = Gy COS ¢ + g,,s1n P + ZgX231n¢ cos¢

. 2 2 .
9y S1n70 +g,,c087¢ + 2gxzs1n¢ coso

«©
(e
4

9y = Yyy

IT. The Stress Relations For The Three Crack Systems

1. The Radial System

The components of the ny stress, along the surface (z=0) pertinent

to radial fracture, are given at peak load, for the upper bound, by* (c=0):

ni
vy .1 [3wg 32
i = Tr=m) | T43une

where Q = x/a

g0
) g, + a%ededo [-2-) g
/ Yyy p ) Sy

(A-2)

O’S f v
- “(“Tzﬁi)“j f a“£qzqo |

1

* .
The greek Tetters represent distances normalized wi ”
cavity radius a (fig. 18). with respect to the



where
2 .
e o AN 1=2v 2 2.y .. 2 2
Jyy = s |1 = 2v = 3 () - - *‘M(Y“ZH)E
Yy Zwazy?’ E <Y> (Y+C7? é\ & >
n = £sind
V2 = 28 1 02 4 % . 280c0s6
At peak load, for the Tower bound;
g S
Yy =(1=2v)
H (1-m)0?
At full unload (r=0)
rpa 3 )
Sy ] swg + 32 . -2m)
H {T-m) 1+30nB 2Q3
g ref 3
yy oo B -1 +m (A-3)
H iz(-]wm)ﬂa 1 + BSZ,HB Y

where m., is the term that permits creation of a stress free indentation

surface (fig. 7) as obtained by an iteration technique.

2, The Median System

The components of the vy stress pertinent to the median fracture

probtem are not very different from the Oyy stress relevant to radial

fracture., At peak load Oyig/ﬁ and inﬁ/H bear the same form as egn.

(A-1), except that £ 1is replaced by ¢ (the median crack propagates
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along the plane € = 0), and Oy§ /H is the same as eqn. (A-2), except
that y2 becomes, yz = gé + QZQ At full unload, the same change

should be made, i.e. € vreplaced by ¢ , in equation (A-3),

3. The Lateral System

The components of the o,, Stress that pertain to the lateral

fracture problem are, at peak load, for the upper bound;

2., .7 2

pl
Gzz- 1 A (Q°+g") + 360

f (i=0) | 72080 Gsme) () |

il

al
g e
7z

H

3

B 20
PR L (@72 - ¢
L(7+2°)  (1+32nB)

%) (A-4)

Uzz/H exhibits the same form as egn. (A-2) except that gyy is replaced

by 9,y where 9,5 = w3c3/2w32y5 and ¢ = z/a.

At peak load, for the Tower bound,

5/2
(1-m) (2°+27)

At full unload

Jrpt | ' 2 2 s

Y2z _ 1 §32ﬂ(Q2+;2) N SQZ + (z=-0"/2) (T-m.) - 1]
reg

Ozz 1 3 (gz - 92/2)

LB -
T ¢ v U R ™l vy (C2+92)5/2 (A-6)



111, Analytic Solution For The Surface Stresses

At full load, the modification to the tangential stress on the surface

(responsible for radial cracking) created by the free surface is;

5 S
“yy_ = t 't
H T azdedo - (9]
(A-7)
When ¢ = 0,
. (1-2v) 2
9, = - [i +HQ© - 28Qc0s0 - 2 24 -
vy 2wy4a2 i £2sin ] (A-8)
substituting eqn. (A-8) into eqn. (A-7) the stress becomes
B oo
/ eL z
Wgty . :ZvF o ,
(T mé gdg + (-A) »—%« gde | (A-9)
where
o2 .
A = ;ﬁ £+ QZ - 28Qc0s8 - Zgzsinze 4o
o (e + 9% - Zgﬂcose)z
<Q‘2 > gZ>
(¢? > ?)
if Q<B
5 S

Yoo (1-2v) 3
(Lm;)@? Tesamg Loan - (1/2) (2-1)7 - (Qm?ﬁ

f (A-10)
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if O>8

0 (1-2v) ! s - 1726 + 372 - £ E - (6-1)
el = 7 ) TEswme | ” o

on}

B

(1-m)Q

At full unload, if 0 < B

o y Tem
o (1-2v) {mgng [aena - (1/20a-1)]+ {lz )} (A-12)

(i%m)QZ 0

if Q>8

S
o] v 3
vy {1-2) 1 {3peng - 1/28 + 3/2 - E—E« (8-1) - (1-m )<l m)

(A-13)
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Table I

Normalized Plastic Zone Size (8) and Material Properties

Materials K. H E B 8
MPavim GPa - GPa theory experiment
B 1
Soda Time glass'') | .75 5.5 70 2.3 2.2(1)
Gel?) 5 9 140 2.5
% (3
R1,04+421/0 ZPOQ(S) 6.5 15 264 2.6 2.5(3)
ZPOZ(PSZ)(4) 6.9 11.4 170 2.6
846(4) 6.0 32.2 500 2.5
A1,0,(5+¢)(5) 2.2 23 400 2.5
gils.c.)(1) 7 9 168 2.65
) {
sic\nep-)(4) 4.0 19,3 420 2.8
siy, (Mep-)(4) 4.9 4.1 320 2.3
3y
Mgo (6) 1.2 9.3 240(02) | 3 9
mgF,(®) 0.9 5.8 140(00) | 3.9
h.p.
A1203,( p.)(6) 4.1 12 393(6¢) | 53
7ns(1) 1.0 1.9 103 4.0 3.0(1)
7ns(7) 1.0 3.8(72) 1103 3.1 2.65(72)
Znse !4 .9 1.0 68 4.4
Cold rolled steet(®) 3.4 200 4.6 4.5(8)
Nac1(6) Y 24 43(62) 6.3
Hot rolled brass(S) 47 110 1 7.0 7.0(8)
(s.c.) = single crystal (hop.) = hot pressed
(1) Lawn, Evans and Marshal] (1980) (6a) Lawn and Wilshaw (1975)
(2) Lankford (1979) (6b) Rai and Manghnani (1976)
(2a) Jaccodine (1963) (6¢c) Freiman, Mickinney and Smith (1978)
(3) Burlingame (1980) (7) Dynamic Impact, estimated value
(4) Evans (1979) (7a) Computer simulated vesult, Evans (1979¢)
553 Evans and Wilshaw (1976) (8) Mulhearn (1959)
6) Lawn and Evans (1977)
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Table II

RADIAL, MEDIAN AND LATERAL CRACKS

crack * "
Material 8 type- ¢ (um) p (N)

Glass 2.2 R 1 0.4

M 1 0.6

L 3 2.0

%;CT ta) 2.8 R 3 5.0
olycrysta M A 1
L 40
S'igNél 2.8 R 7 30
(Polycrystal) M 12 80
L 20 210
inS 4.0 R 20 8

Polycrystal

(Polyerystal) M 40 50
L 65 100



RADIAL CRACK INITIATION THRESHOLD
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Table 111

Experimental
Prediction {Observations
¥ * * *
Material C n C p
{(um) (M) (um) (N)
Glass 2.2 1.1 0.6 17 5 &
GelS+Cr) 2.5 16 014 .25 o2t
gils.c.) 2.65 36 .05 65 03T
f
mzog(s co) 2.5 6 4 3 125.0.5"
Nac1(s<C.) 6.3 340 120 100 15-60"T
7ns 4.0 17 8 70 6 1t

A Marshall and Lawn (1979b)

+ Lankford and Davidson (1979)

t+  Evans and Wilshaw (1976)

*

Data obtained for a single grain (grain size 25um)

Predictions and observations pertain to the unloading half-cycle for

glass and to the loading half-cycle for all other materials.




40

Table 1V
RADIAL FRACTURE PREDICTIONS FOR
POLYCRYSTALLINE MATERIALS

Material KC H E c P
wpam'/%  gpa GPa (um) (N)

B,C 2, 6.0 2.2 500 2 9
pS7 2, 6.9 m.4 170 20 240
$iC 2, 2,0 19.3 420 3 5
Sigh, 2. 4.9 14.1 320 7 30
MgF, 3, .9 5.8 140 1.4 0.4
Mg0 3, 1.2 9.2 240 1 0.3
A1,0, 3. 4.1 12,0 393 7 15
InSe 4, .9 1.0 68 50 3.4
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FIGURE CAPTIONS

The influence of indenter angle on the pyramidal hardness for
three brittle materials: soda-lime glass, ZnS and A5253 glass.
The effect of the ratio of the modulus to the hardness, E/H,

on the relative plastic zone size g (b/a) for a range of
materials. Also shown are the theoretical predictions from

the Hi11 solution, the Johnson analysis and the present analysis.
The trend in the ratio of the indentation pressure to the yield
strength with the modulus to yield strength ratio for a range

of materials. Also shown are the predictions from the Hill
solution, the Johnson analysis and the present analysis.

A schematic showing the analytic procedure for creating a stress
free surface and hence, for deforming the residual stress distri-
bution: a) the general procedure, (b) the specific procedure for
the hemispherical indentation and (c) the}upper and lower bound
conditions used for calculating the stress at peak load.

The ratio of the hardness H to the spherical cavity pressure

around the hemispherical indentation interface for three values of

the relative plastic zone size, B , indicating the relative uni-
formity of H/p .

The ratio of the modified yield strenath Y' to the spherical
cavity pressure p around the hemispherical indentation interface
for three values df the relative plastic zone size, B8 .
Free surface correction factors m and m

r
of the relative plastic zone size.

plotted as a function



Fig. 8.

Fig. 9,

Fig., 10.

Fig. 11.

Fig. 12,

Fig. 13,

Fig. 14,

Fig. 15,

Fig. 16,

Fig. 17,

Fig. 18.

The components of the peak load tangential stress at the surface
(z=0) pertinent to radial fracture, indicating the initial cavity
solution, the modification induced by the free surface and the
point force solution used to compute the upper lower peak load
stress.

The tangential stress at the surface pertinent to radial fracture,
obtained at both the peak load condition and in the residual condi-
tion, for two choices of the relative plastic zone size,

The gradient in the near surface residual tangential stress, taken
from the elastic/plastic boundary, surface intersection, for two
choices of the relative plastic zone size.

The tangential stress distribution pertinent to median cracks in the
peak load (upper bound) and residual conditions.

The gradient in the tensile stress component that dictates median
fracture.

The o,, stress that determines lateral fracture at different depth
Tocations for a relative plastic zone size of 2.2 (a) at peak load
and (b) the residual stress.

The trends in the Oy stress with relative plastic zone size.

A correlation of the predicted radial crack length with experimental
data for well developed cracks,

The variation of the predicted minimum threshold Toads for radial
and median cracking with the relative plastic zone size.

The variation in the normalized stress intensity factor for radial

cracks with the relative crack Tength.

The coordinate system for stress analysis.
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